

Test One

Semester One 2018 UNIT 1 METHODS

Calculator Assumed 40 minutes

/45 marks

Scientific Calculator, ClassPad, Formula Sheet and One page one side of A4 notes is permitted

Name:	Solutions	
-------	-----------	--

Place a tick in the box next to your Mathematics teachers name:

Mr Strain	
Ms Sindel	
Ms Rimando	
Mr Gannon	
Mr Young	
Mrs Flynn	
Ms Ensly	

Consider the following points, A (4,9) and B (20,12).

i) Determine the exact distance from point A to B.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(12 - q)^2 + (20 - 4)^2}$$

$$= \sqrt{9 + 256}$$

$$= \sqrt{265} \approx 16.28 \sqrt{2}$$

ii) Determine the midpoint between points A and B.

$$M = \left(\frac{x_2 + x_1}{2}, \frac{y_2 - y_1}{2}\right)$$

$$= \left(\frac{4 + 20}{2}, \frac{9 + 12}{2}\right) \checkmark$$

$$= \left(12, 10\frac{1}{2}\right) \checkmark$$

iii) If point B was the midpoint of points A and point C. Determine the coordinates of point C.

$$A(4,9) \quad B(20,12) \quad C(x,y)$$

$$(20,12) = \begin{pmatrix} 4+x \\ 2 \end{pmatrix}, \begin{pmatrix} 9+y \\ 2 \end{pmatrix}$$

$$20 = 4+x$$

$$12 = 2$$

$$24 = 9+y$$

$$x = 36$$

$$y = 15$$

$$1 \quad Point C is (36,15)$$

Question 2

$$(2, 2, 1, 3 = 8 \text{ marks})$$

Determine the equation of a line that passes through the point (-10,3) and :

- passes through the point (5, -7). (-10,3) (5,-7) $M = x_2-x_1$ y = Mx+C (-10,3) (5,-7) $M = x_2-x_1$ $y = 3 = \frac{-3}{3}(-10)+C$ i)
- ii) is parallel to the line y = -5x + 11. M = -5 $\left(-10 \cdot 3\right)$

$$M = -5$$
 (-10)
 $y = mx + c$
 $3 = -5(-10) + c$
 $3 = 50 + c$

$$y = mx + c$$
 $3 = -5(-10) + c$
 $3 = 50 + c$
 $c = -47$
 $y = -5x - 47$

iii) is parallel to the y axis.

$$x = -10$$

iv) is perpendicular to the line x - 4y =

$$-4y = -x + 9$$

$$-4y = -x + 9$$

$$y = \frac{1}{4}x - \frac{9}{4}$$

$$(-10_{1}3)$$

$$y = mx + c$$
 $3 = -4(-10) + c$
 $3 = 40 + c$
 $c = -37$

y = -4x - 37

Consider the line 5x + my = 21, where m is a constant.

i) In terms of m, determine the y intercept.

my =
$$-5x + 21$$

y = $-5x + 21$
y = $-5x + 21$
y = $-5x + 21$
m + m

y intercept is $(0, m)$

ii) In terms of m, determine the midpoint of the x and y intercepts.

At
$$y=0$$
 $5x=21$

$$x=\frac{21}{5}$$

$$x \text{ intercept is } (\frac{21}{5},0)$$

$$\text{Midpoint} = (0+\frac{21}{2},\frac{21}{m+0})$$

$$= (\frac{21}{10},\frac{21}{2m})$$

iii) Determine the value of m so that the line will never cross y = 7x.

$$M=7$$
 $5x + my = 21$
 $my = -5x + 27$
 $my = -\frac{5}{2}x + \frac{27}{m}$
 $y = -\frac{5}{2}x + \frac{27}{m}$

Question 4

(1, 1, 2 = 4 marks)

Jessica needs to hire a car for a number of days. The hire car company has two options from which she can choose.

Budget: \$15 per day plus \$0.25 per km travelled

Deluxe: \$42 per day for unlimited travel

- i) Jessica will hire the car for n days and drive a total of x km.
 - a) Find an expression for the cost, C, in terms of n for the Deluxe option.

b) Find an expression for the cost, C, in terms of C and C, for the Budget option.

ii) If Jessica plans to drive a total of 600 km, find the maximum number of days for which she can hire the car so that it is cheaper for her to take the Deluxe option.

225

Question 5

$$(2, 2, 2 = 6 \text{ marks})$$

Factorise the following expressions:

i)
$$4x^2y - 12xy^4$$

$$4x^2y - 2xy^4$$

$$4x^2y - 2xy^4$$

ii)
$$x^3 - 3x^2 - 9x + 27$$

= $\chi^2(x-3) - 9(x-3)$
= $(\chi^2 - 9)(\chi - 3)$ V
= $(\chi - 3)(\chi + 3)(\chi - 3) = (\chi - 3)^2(\chi + 3)$

iii)
$$18x^2 + 33x - 30$$

$$= 3 \left(3x - 2\right)\left(2x + 5\right) \sqrt{1}$$

Question 6 (5 marks)

On the axes below, sketch the parabola $y = -2(x+3)^2 + 6$ showing all major features such as line of symmetry, turning points, x intercepts (if any).

For each of the following write down the equation of a parabola that satisfies the following: (No need to simplify)

i) A quadratic with intercepts (4,0) and (-7,0) with a y intercept of (0, -56).

$$y = a(x-4)(x+7)$$

At
$$(0, -56)$$
 $-56 = a(-4)(7)$
= -28\alpha
 $a = 2$
 $y = 2(x-4)(x+7)$

ii) A quadratic with a maximum turning point (7,1) and an x intercept (10,0).

TP (7,1)

$$y = a(x-7)^2 + 1$$

At (10,0)

 $0 = a(3)^2 + 1$
 $= 9a + 1$
 $-1 = 9a$
 $a = -\frac{1}{9}$
 $y = -\frac{1}{9}(x-7) + 1$

Determine the value of x for the shape below.

Area (B) =
$$(8-x)x$$

 $= -x^2 + 8x$

Total Area
$$65 = -x^2 + 8x + 10x$$

$$0 = -x^2 + 18x - 65$$

$$= x^2 - 18x + 65$$

$$= (x - 5)(x - 13)$$

$$x = 5 = 13$$
As 13710 , 13 is not a solution
$$x = 5 \text{ cm}$$
End of test